آخرین مطالب پيوندها
نويسندگان
ریاضیات نوین
اطلاعات اولیه بیشتر کمیات فیزیکی که در فیزیک و علوم مهندسی با آنها مواجه میشویم، به دو صورت اسکالر (نردهای) و برداری هستند. یک کمیت اسکالر تنها با بیان بزرگی و همراه با یکای خود ، اگر داشته باشد، کاملا مشخص میشود. به عنوان مثال جرم یک کمیت اسکالر است که با مقدار و یکایش که کیلوگرم است، کاملا مشخص میگردد. دسته دیگری از کمیات ، کمیات برداری هستند که علاوه بر مقدار و یکا دارای جهت نیز هستند. نمایش کمیاب برداری گفتیم که هر کمیت برداری علاوه بر مقدا و یکا با جهت نیز مشخص میشود، از نظر ترسیمی ، یک بردار با یک پاره خط و یک پیکان در یک انتهای آن نمایش داده میشود. طول پاره خط تقریبا متناسب با بزرگی کمیت برداری است، پیکان جهت کمیت برداری را نشان میدهد. به عنوان مثال اگر A یک کمیت برداری باشد، در این صورت نمایش داده میشود. تساوی بردارها دو بردار را در صورتی مساوی میگویند که بزرگی و جهت آن دو با هم برابر باشند. به عبارت دیگر برای تساوی دو بردار علاوه بر اینکه باید اندازه یا بزرگی آنها با هم برابر باشد، باید هم جهت نیز باشد. ضرب بردارها بردارها معمولا به دو صورت میتوانند در هم ضرب شوند. این دو به نامهای ضرب داخلی یا عددی و ضرب برداری معروف هستند. ضرب عددی ضرب عددی دو بردار B و A با نماد B.A نمایش داده میشود و حاصل آن برابر است با حلصضرب بزرگی دو بردار در کسینوس زاویه بین آنها از آنجا که90 Cos برابر صفر است، لذا میتوان گفت که اگر حاصضرب عددی دو بردار برابر صفر باشد در این صورت این دو بردار بر هم عمودند. ضرب برداری ضرب برداری دو بردار دلخواه B,A بصورت A×B نشان داده میشود و مقدار آن برابر است با حاصضرب بزرگی دو بردار در سینوس زاویه بین آنها. همچنین میدانیم که سینوس صفر یا 180 درجه صفر است، بنابراین دو بردار موازی باشند، در این صورت حاصل ضرب برداری آنها صفر خواهد شد. جمع و تفریق برداری برای جمع دو بردار به روش تحلیل قواعد مختلفی وجود دارد که در اینجا به چند نمونه اشاره میشود.
تفریق دو بردار تفریق دو بردار را نیز میتوان با استفاده از قاعده جمع برداری مشخص نمود. به عنوان مثال اگر بخواهیم حاصل A-B را تعیین کنیم، بردار A را با بردار B - که برداری به اندازه B و در خلاف جهت آن است، جمع کنیم.
اطلاعات اولیه بحث حرکت در دو یا سه بعد با وارد کردن مفهوم بردار بسیار ساده میشود. یک بردار از نظر هندسی به صورت کمیتی فیزیکی تعریف میشود که بوسیله اندازه و جهت در فضا مشخص میشود. به عنوان مثال میتوان به سرعت و نیرو اشاره کرد که هر دو کمیتی برداری هستند. هر بردار را با یک پیکان که طول و جهت آن نمایشگر اندازه و جهت بردار است، نمایش میدهند. جمع دو یا چند بردار را میتوان بر اساس راحتی کار با استفاده از روشهای متوازی الضلاع یا روش تصاویر که در آن هر بردار را به مولفههایش در امتداد محورهای مختصات تجزیه میکنند، انجام داد. ضرب بردارها ضرب بردار در حالت کلی به دو صورت ضرب نقطهای یا عددی و ضرب برداری انجام میشود. در ضرب عددی یا اسکالر یا نقطهای که با نماد A.B نمایش داده میشود، حاصضرب برابر با است با حاصضرب اندازه یک بردار در اندازه تصویر بردار دیگر بر روی آن. طبیعی است که اگر دو بردار بر هم عمود باشند، حاصضرب آنها صفر خواهد بود. اما در ضرب برداری که بصورت A×B نمایش داده میشود، نتیجه حاصضرب ، برداری است که جهت آن با استفاده از قاعده دست راست تعیین میشود و اندازه آن با حاصضرب اندازه دو بردار در سینوس زاویه بین آنها برابراست. ضرب برداری علاوه بر دو حالت فوق میتواند بصورت مختلط نیز باشد. به عنوان مثل اگر C , B , A سه بردار دلخواه باشند در این صورت میتوان ضربهایی به شکل A.B×C یا A×B×C نیز تشکیل داد. اما همواره باید توجه داشته باشیم که نتیجه حاصلضرب اسکالر یا عددی یک عدد است در صورتی که نتیجه حاصلضرب برداری یک بردار است. قاعده دست راست قاعده دست راست که در بیشتر مسائل فیزیک که با بردارها سر و کار دارند مطرح است، به این صورت بیان میشود. فرض کنید A و B دو بردار دلخواهی هستند که به صورت برداری در یکدیگر ضرب میشود. برای تعیین جهت بردار حاصضرب کافی است چهار انگشت دست راست را در راستای بردار اول قرار داده و بوسیله چهار انگشت خود این بردار را بطرف بردار دوم بچرخانیم، در این صورت جهت انگشت شست دست راست در راستای بردار منتجه خواهد بود مشتق گیری برداری برای مشتق گیری برداری قواعد خاصی وجود دارد که به صورت زیر اشاره میشود.
انتگرال گیری برداری در حالت کلی سه بعدی دو نوع تابع میتوان در نظر گرفت. توابع نقطهای اسکالر و توابع نقطهای برداری. به عنوان مثال تابع انرژی پتانسیل یک تابع نقطهای اسکالر است، در صورتی که شدت میدان الکتریکی یک تابع نقطهای برداری است. همچنین انتگرال گیری نیز میتواند به سه صورت خطی ، سطحی و حجمی صورت گیرد. در حالت اول انتگرال گیری بر روی یک منحنی صورت میگیرد. اما در حالت دوم انتگرال گیری روی یک سطح و سرانجام در حالت چهارم روی یک حجم صورت میگیرد. نکته قابل توجه در اینجا این است که انتگرال گیری با توجه به تقارن موجود و نیز نوع تابع مسئله در سیستمهای مختصاتی مختلف انجام داد. به عنوان مثال اگر مسئله مورد نظر ما دارای تقارن کروی باشد بهتر است کلیه انتگرالهایی که در مسئله مورد نیاز است در سیستم مختصات کروی انجام دهیم.
فرض کنید که شخصی در خیابان از شما میپرسد، کتابخانه کجاست؟ و شما جواب بدهید، نیم کیلومتر از اینجا فاصله دارد و سپس به راه خود بروید. او نمیتواند کتابخانه را پیدا کند، زیرا نمیداند که در چه جهتی باید حرکت کند. به همین ترتیب ، نیروی وارد از تسمه کایت و قلاده به دست شخص نیز هم از نظر بزرگی و هم از نظر جهتی باهم فرق دارند. بردار ، سازهای ریاضی است که برای مشخص کردن کمیتهایی
نظرات شما عزیزان:
چهار شنبه 14 دی 1390برچسب:بردار, :: 19:11 :: نويسنده : محمدامین برهانی
![]() ![]() |